A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae.

نویسندگان

  • F Rademacher
  • V Kehren
  • V R Stoldt
  • J F Ernst
چکیده

Saccharomyces cerevisiae and the pathogen Candida albicans can be induced to undergo morphogenesis from a yeast to a filamentous form. A C. albicans gene (CaCCT8) was identified encoding a subunit of the Cct chaperonin complex, whose expression prevents filament formation in both fungi without interfering with growth of the yeast form. In S. cerevisiae, pseudohyphal growth induced by Ras2Val19, by overproduction of Phd1p or by expression of the C. albicans EFG1 gene, was blocked by CaCct8p and its N-terminally deleted derivative CaCct8-delta1p; in contrast, pseudohyphal induction by other components (Cph1p, Cdc42p) could not be suppressed, indicating that morphogenesis per se is not inhibited. CaCCT8 expression also interfered with other Ras2pVal19 phenotypes, including heat sensitivity, lack of glycogen accumulation and lack of sporulation. In C. albicans, overproduction of CaCct8p effectively blocked hyphal morphogenesis induced by starvation conditions and by serum. The results suggest that the activity of a component in the Ras2p signal transduction pathway is suppressed by excess chaperonin subunits. This component may be a novel folding target for the Cct complex. In agreement with this hypothesis, disruption of one of the two CaCCT8 alleles in C. albicans led to defective hyphal morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p.

Candida albicans, the most prevalent fungal pathogen of humans, causes superficial mycoses, invasive mucosal infections, and disseminated systemic disease. Many studies have shown an intriguing association between C. albicans morphogenesis and the pathogenesis process. For example, hyphal cells have been observed to penetrate host epithelial cells at sites of wounds and between cell junctions. ...

متن کامل

Identification of Candida albicans genes that induce Saccharomyces cerevisiae cell adhesion and morphogenesis.

Morphogenesis and adhesion to host tissues and medical devices contribute to the virulence of Candida albicans, the most common fungal pathogen isolated from humans. However, identification of molecular mechanisms of C. albicans adhesion and morphogenesis has been impaired by the lack of effective molecular and genetic tools available for this organism. Saccharomyces cerevisiae provides an attr...

متن کامل

The Phenotypic variation of Candida albicans and susceptibility to fluconazole and voriconazole

Candida albicans is the most frequent opportunistic fungal agent in human being. One of its virulence factors is phenotypic switching. In this study, we investigated the susceptibility of different phenotypes of C. albicans, obtained from clinical specimens, to fluconazole (FLZ) and voriconazole (VRZ) with microdilution reference method. In this study, 281 C. albicans of six different phenotype...

متن کامل

Regulatory circuitry governing morphogenesis in Saccharomyces cerevisiae and Candida albicans

4294 Cell Cycle Volume 11 issue 23 A common hallmark of many fungal species is the capacity to undergo cellular morphogenesis programs, which, for fungal pathogens, play critical roles in sexual reproduction, nutrient acquisition and virulence. Fungal morphogenesis comprises a diversity of processes, ranging from spore germination and branching in filamentous fungi such as the pathogen Aspergil...

متن کامل

Green synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae

Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 144 ( Pt 11)  شماره 

صفحات  -

تاریخ انتشار 1998